

SD-670D & SD-670DE Series User Manual

SD-671D VHF / SD-674D UHF

SD-671DE VHF / SD-674DE UHF

RF Audio/Data Modem (DMR)

Maxon America, Inc.

11535 W 83rd Terrace, Lenexa, KS 66214

Phone: 800-456-2071 / 913-859-9515

Fax: 913-859-9550

E-mail: maxon@maxonamerica.com Website: www.maxonamerica.com

1. SD-670D & SD-670DE Digital RF Modem Main Functions

The Maxon SD-670 Series Radios are durable, reliable, and designed to meet the needs for a variety of wireless applications in either Digital (DMR) or Analog mode.

SD-670 Series modems incorporate the most requested mechanical footprint in the industry and the most widely used BNC antenna connector. Transmit power can be adjusted via AT Commands from 1 to 5 watts (UHF) and from1 to 10 watts (VHF) to provide the power needed for any job. The LED indicator gives instant on-sight status of the modem's operation and are designed for low current drain but fast transmitter/receiver attack times. Built in AES (256-Bit) encryption in the SD-670DE Series secures both voice and data communications and is compatible with other Maxon radios with AES Encryption.

The die cast aluminum cabinet/lid provides resistance to RF interference and gives exceptional environmental durability in the most extreme conditions.

SD-670 Series Functions

- Frequency band VHF: 150~174MHz, UHF: 410~470MHz.
- Dual mode (Digital & Analog)
- 1 Zone, 32 channel selections made through internal DIP switches and AT Commands.
- RF Power VHF: 10/5/1 Watt, UHF: 5/1 Watt
- ETSI Standard DMR Protocol Tier 1 & 2
- Industry Standard AMBE+2 Voice Codec
- AES 256-bit Encryption (AES-CTR)** (**Encryption available on SD-670DE models or SD-670D models w/encryption factory option only)
- AT commands provide convenient operation
- 3 wires / 5 wires continuous mode
- Audio Output Power Max rating 0.5 Watt @ 8 ohms. Adjustable from Level 1 − 15.
- Carrier Detect
- RF Communication Data Speed: 9,600bps (Over the Air)
- RS-232C Communication Speed: Standard 115,200bps / 9,600bps (Adjustable w/DIP Switch)
- Convenient PC-based Modem Control GUI Software
- Diecast Lightweight Aluminum Frame/Body
- Service Connector: DE-15 Pin Female Connector
- Power Supply Voltage: DC +12V
- Dimensions: 4.77" (L) x 2.44" (W) x 0.96" (H)

2. Specification

General Specifications

Frequency Range SD-671: 150~174 MHz

SD-674: 410 ~470 MHz

Frequency Stability ±1.5ppm (-30 to +60°C)

Numbers of Channel 1 Zone / 32 Channels

Channel Spacing 12.5KHz
Digital Vocoder AMBE++

Size $110mm(H) \times 25mm(W) \times 51mm(D)$

Weight 280g

Power Source UHF: 9-24V, VHF: 12-24V.

Current Consumption Receive Mode @ Maximum audio – 350 mA (Audio Max)

Transmit Mode @ High Power - VHF: 2,500mA

UHF: 1,200mA

Standby ≒110mA (max. 115mA), Standby in "Power-Saving" modes via radio programmer

(50~85mA range)

Receiver Specifications

Reception Sensitivity 0.25uV 12 dB SINAD
Squelch Sensitivity 0.22uV 10dB SINAD
Selectivity 65dB (12.5KHz)

Spurious and Harmonic Rejection 70dB

FM Hum and Noise 40dB (12.5KHz)

Audio Output 1Vrms

Audio Distortion Less than 3%

Audio Characteristics +1, -3 dB from 6dB per octave de-emphasis Characteristic

from 300 ~ 3000Hz

Transmitter Specifications

RF Output VHF: 10/5/1 Watt, UHF: 5/1 Watt

Spurious and Harmonic 70dB

FM Hum and Noise 40dB (12.5KHz)
Audio Distortion Less than 3%

Audio Characteristics +1, -3dB from 6dB per octave pre-emphasis Characteristic

from 300 \sim 3000Hz

Output Impedance 50 ohms

3.0 Overview

The SD-670 Series modems are digital RF modems that support data and voice communication. Digital uses AMBE3000 vocoder chip with AMBE+2 voice compression algorithm for excellent voice quality. The SD-670 series uses serial interface, are operable with AT commands, and can be applied to work in various fields.

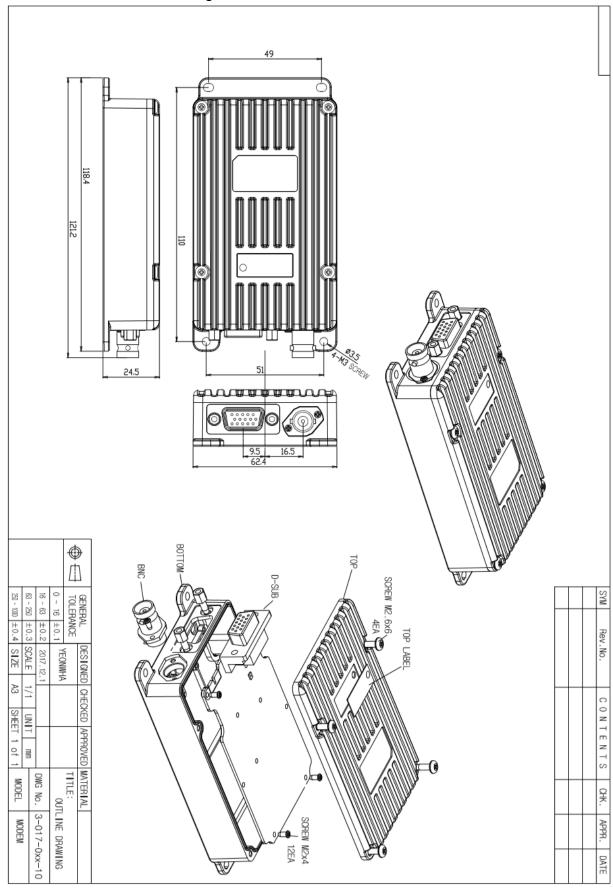
3.1 Functions

- RF Communication Data Speed: 9,600bps

- Serial Interface support (AT Command): 115,200 bps / 9,600bps (Select DIP Switch)

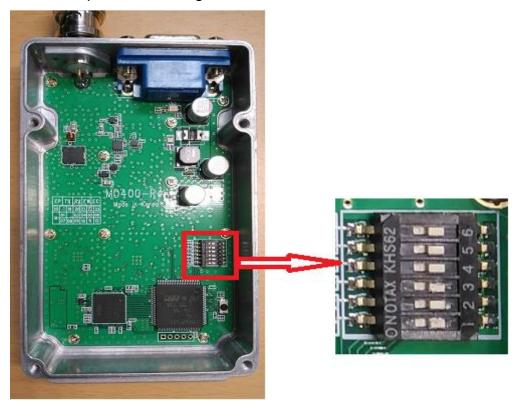
- Frequency band: 1) SD671: 150MHz ~ 174MHz

2) SD674: 410MHz ~ 470MHz


3.2 External Interface

Picture 3-2) Main Pin Specification

3.3 D-SUB 15-Pin Connector Specification


Pin Name	Pin Description	I/O
Not used		
Not used		
PTT	Low Active	I
DC12V	DC+12V	I
CTS		I
Carrier Detect		0
MIC_IN	30mV @ 2KHz Dev	I
FLASH_PRO		I
SPEAKER_OUT	300mV @ 1KHz dEV	0
RX_DATA	3.3V TTL	I
TX_DATA	3.3V TTL	0
RTS		0
GPS_TX_DATA	3.3V TTL	0
Ground	Ground	
GPS_RX_DATA	3.3V TTL	I
	Not used PTT DC12V CTS Carrier Detect MIC_IN FLASH_PRO SPEAKER_OUT RX_DATA TX_DATA RTS GPS_TX_DATA Ground	Not used PTT Low Active DC12V DC+12V CTS Carrier Detect MIC_IN 30mV @ 2KHz Dev FLASH_PRO SPEAKER_OUT 300mV @ 1KHz dEV RX_DATA 3.3V TTL TX_DATA 3.3V TTL RTS GPS_TX_DATA 3.3V TTL Ground Ground

3.4 SD-670D/670DE Drawing

4. How to set the DIP Switches

4.1. Dip switch setting

Picture 4-1) Dip Switch Baud Rate Setting and Channel Setting

4.2 Baud Rate Setting

The modem's baud rate can be changed by switch No.6

DIP Switch	Baud Rate
	115,200bps
123456	9600bps

Picture 4-2) DIP Switch Baud Rate Setting

4.3 Channel Setting

There are two ways to set the channel: DIP switch and AT command.

1. DIP switch channel setting method can be set by using DIP switches 1, 2, 3, 4, and 5.

- 2. Table below shows how to set all 32 channels.
- 3. AT Command channel setting has the following rules for the priority of the two methods. When the power is turned on, the SD-670D operates as follows.
 - 1) The channel is set according to the DIP switch when booting.
 - 2) When changing channel with AT Command, DIP Switch will be ignored and return to DIP Switch setting through AT Command (AT * DIP = 1).

DIP Switch Meaning

1st DIP Switch: 5th digit in binary 2nd DIP Switch:4th digit in binary 3rd DIP Switch: 3rd digit in binary 4th DIP Switch: 2nd digit in binary 5th DIP Switch: 1st digit in binary

Below is the channel table according to DIP Switch status.

DIP Switch	Binary	Channel Value
123456	00000	1
123456	00001	2
123456	00010	3
123456	00011	4
123456	00100	5
123456	00101	6
123456	00110	7
123456	00111	8
123456	01000	9
1 2 3 4 5 6	01001	10

	01010	11
123456	01011	12
123456	01100	13
123456	01101	14
123456	01110	15
129456	01111	16
123456	10000	17
123456	10001	18
123456	10010	19
123456	10011	20
123456	10100	21
123456	10101	22
123456	10110	23
123456	10111	24
123456	11000	25
123456	11001	26
129456	11010	27
123456	11011	28

123456	11100	29
123456	11101	30
129456	11110	31
123456	11111	32

Picture 4-3) DIP Switch Channel Setting

5. SD-670 Operation Mode

Supports 3 modes: 1) AT Command mode 2) Continuous mode for keyboard input 3) or File Transfer using Tera Term.

- 1) AT Command mode
- 2) 3 Wires continuous mode (Operates in 3 Wire Mode (TXD, RXD, GND)).
- 3) 5 Wires continuous mode (used for many data transmissions). Supports H / W flow control using TXD, RXD, CTS, RTS, GND.

When the SD-670 data modem is booted for the first time, AT Command mode is set.

To change from AT Command mode to Continuous mode, use AT Commands as shown below.

Description	SD-671/674 Operation Mode Setting
0	AT*CMODE?
Query	"CMODE: OFF
Answer	"CMODE OK"
Parameters	3WIRES
	5WIRES
	OFF
Example	AT*CMODE=3WIRES
	AT*CMODE=5WIRES
	AT*CMODE= OFF
	Select the required mode from above

6. AT Command interface

Set the modem status or use AT Commands for function operation. Serial speed is 115,200 bps.

6.1 VERSION

Description	Command to check the modem version
Query	AT*VERSION?
Answer	*VERSION: <value></value>
Parameters	
	AT*VERSION?
Example	*VERSION: Modem v1.0
	ОК

6.2 RESET

Description	Command for reset the modem
Query	AT*RESET?
Answer	RESET
Parameters	
	AT*RESET?
Example	RESET
	Going down terminal

6.3 MSG

Description	Command for sending a message
Query	AT*MSG= <value>?</value>
Answer	ОК
Parameters	String
Example	AT*MSG=AA?
	OK

6.4 VOL

Description	Command for the checking or set the modem volume
Query	AT*VOL?
Answer	GET VOLUME(<value>)=(<value>)</value></value>

	AT*VOL= <value></value>
	SET VOLUME(<value>)=(<value>)</value></value>
Parameters	1 ~ 16
	AT*VOL?
	GET VOLUME(15)=(150)
Example	
	AT*VOL=5
	SET VOLUME(5)=(47)

6.5 OID

OWN ID setting is available through programming software; It can only be "checked" via AT Command.

Description	Command for checking OWN ID
Query Answer	AT*OID?
	OID:00000001
	ОК
Parameters	
Example	AT*OID?
	OID:00000001
	OK

6.6 CHKSTAT

Description	Status check command
Query Answer	AT*CHKSTAT?
	*CHKSTAT:STAT OK
	OK
Parameters	
	AT*CHKSTAT?
Example	*CHKSTAT:STAT OK
	OK

6.7 DIP

	DIP switch is ignored when setting the channel with AT Command. If you
Description	want to change the channel using the DIP switch again, you can use this
	command to change the channel so that it can then be changed by DIP
	Switch operation.
	AT*DIP?
	*DIP= <value></value>
Query	OK
Answer	
Allswei	AT*DIP= <value></value>
	*DIP SET= <value></value>
	OK
Parameters	1: Channel setting using DIP Switch
Parameters	0: Channel setting using AT Command
	AT*DIP?
	*DIP=1
	OK
Example	
	AT*DIP= <value></value>
	*DIP SET= <value></value>
	ОК

6.8 CID

	Call ID check and setting command
Description	Basically, it communicates with Call ID set in radio programmer. You can
Description	change the Call ID with this command, and when changing the channel,
	it will be reset to the Call ID set in the programmer.
	AT*CID?
	CUR-CID: <call id="">,CF:<call format=""></call></call>
	CID[<index>]:<call id="">,CF:<call format=""> [repeat]</call></call></index>
Quant	CALLID OK
Query	
Answer	AT*CID=1
	SET CUR-CID:01
	CID[01]:00000002,CF:GRP
	CALLID OK
Parameters	

	AT*CID?
	CID[00]:00000001,CF:GRP
	CID[01]:00000002,CF:GRP
Example	CID[02]:00000003,CF:GRP
	CID[03]:00000010,CF:GRP
	CID[04]:******,CF:ALL
	CALLID OK

6.9 CHSET

Description	Channel setting command (When this command is used, channel value
	changed by DIP Switch is ignored.)
	AT*CHSET= <channel number=""></channel>
Query	CH: <channel number="">:<channel type="">,RX:<rx frequency="">,<rx< td=""></rx<></rx></channel></channel>
Answer	CC>,TX: <tx frequency="">,<tx cc=""></tx></tx>
	ОК
Parameters	
	AT*CHSET=1
Example	CH:01:DMR,RX:41050000,01,TX:41050000,01
	ОК

6.10 CHLIST

Description	Show channel list command
	AT*CHLIST?
Query	CUR-CHNUM: <current channel="" number=""></current>
Answer	<number>:<channel type="">,RX:<rx frequency="">,<rx< td=""></rx<></rx></channel></number>
	CC>,TX: <tx frequency="">,<tx cc=""> [repeat]</tx></tx>
	ОК
Parameters	
	AT*CHLIST?
	CUR-CHNUM:04
Example	00:DMR,RX:40550000,01,TX:40550000,01
	01:DMR,RX:41050000,01,TX:41050000,01
	02:DMR,RX:41550000,01,TX:41550000,01
	03:DMR,RX:42050000,01,TX:42050000,01
	04:DMR,RX:42550000,01,TX:42550000,01
	ОК

6.11 MINFO

Description	Current setting parameter display command
	AT*MINFO?
	*MINFO: <channel index="">,<radio type="">,RX:<rx< td=""></rx<></radio></channel>
Query Answer	Freq>, <cc>,TX:<tx frequency="">,<tx cc=""></tx></tx></cc>
Answei	OID: <own id="">,CID[<call id="" index="">:<call id="">,CF:<call format=""></call></call></call></own>
	ОК
Parameters	
	AT*MINFO?
Example	*MINFO:04,DMR,RX:425500000,01,TX:425500000,01
	OID:00000001,CID[00]:00000001,CF:GRP
	ОК

6.12 PWRLEVEL (Power Level)

Description		Radio defaults at Low
	Power Level Setting	Power and can be
Description		changed with this
		command.
	AT*PWRLEVEL?	
	GET PWRLEVEL= <value></value>	
Query	OK	
Answer	AT*PWRLEVEL= <value></value>	
	SET PWRLEVEL= <value></value>	
	OK	
Model Name	AT Command Parameters	RF Power
	0: Low Power	2W
SD-671D	2: Medium Power	5W
	1: High Power	10W
SD-674D	0: Low Power	2W
3D-074D	1: High Power	5W
	AT*PWRLEVEL?	
	GET PWRLEVEL=0	
Example	OK	
	AT*PWRLEVEL=1	

SET PWRLEVEL=1
ОК

5.13 TARGET

Description	Commands that specify where to send voice or data
Query	AT*TARGET?
Answer	CUR-TARGET:00000001, CF:GRP
Parameters	Contact format(1byte): 0[group], 1[individual], 2[ALL]
	ID(8byte)
	AT*TARGET=011111111
Example	SET-TARGET:11111111,CF:GRP
	TARGET OK

5.14 Busy MODE

Description	Commands that specify how Carrier Detector # 6 operates	
Outomy	AT*BUSYMODE?	
Query Answer	Busy MODE: Match or	
Answer	Busy MODE: Carrier Detect	
	0 [Match]: When ID and color code are matched and audio is opened,	
Parameters	Carrier Detector pin outputs low	
	1 [Carrier Detect]: When the frequency is matched Carrier Detector	
	pin outputs low.	
	AT*BUSYMODE=1	
Example	Busy MODE: Carrier Detect	
	Busy MODE OK	

5.14 Continuous MODE

Description	Commands that specify how data is transmitted
Query	AT*CMODE?
Answer	CMODE : OFF or CMODE : 3wires or CMODE : 5wires
	"OFF": AT Command Mode
Parameters	"3WIRES": Continuous without HW flow control
	"5WIRES": Continuous with HW flow control
Example	AT*CMODE=3WIRES
	CMODE: 3wires

CMODE OK	
----------	--

The SD-670 series supports continuous mode for keyboard input or file transfer using Tera Term in addition to the existing AT CMD mode.

The SD-670 series modem has the following three operation modes.

- 1) AT CMD mode
- 2) 3wires continuous mode
 - HW flow control using CTS and RTS is not supported.
- 3) 5wires continuous mode
 - HW flow control using CTS and RTS is supported.

The modem is AT CMD mode when it is booted at the first time.

To change from AT CMD mode to continuous mode, use AT CMD below.

- 1. AT * CMODE = 3WIRES (enter)
- changed to 3wires continuous mode

If the command is entered correctly, "CMODE: 3wires", "CMODE OK" will display.

- 2. AT * CMODE = 5WIRES (enter)
- changed to 5wires continuous mode

If the command is entered correctly, "CMODE: 5wires", "CMODE OK" will display.

To change from continuous mode to AT CMD mode, use AT CMD below.

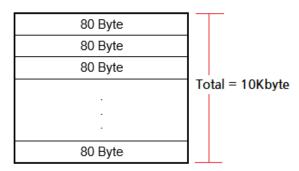
- 1. AT * CMODE = OFF (enter)
 - Change to AT CMD mode

If the command is entered correctly "CMODE: OFF", "CMODE OK" will display.

1. AT Command Data Configuration

AT*MSG= ASCII Data (80 byte)	0D0A
------------------------------	------

2. Send text documents using Tera Term wirelessly


1) RS-232C Serial Buffer of SD-670 has a total of 10 Kbytes.

Each buffer stores 80 bytes of data.

2) Serial transmission Timer transmits maximum 80 bytes after 120msec received buffer check.

- To improve performance, the Serial Transfer Timer can be reduced by 120msec, and the amount of data transferred can be increased or decreased.
- Currently, the amount of data transferred is fixed at 80 bytes.
- 3) It is suggested to use a program like Tera Term to input characters on the keyboard, so it will be sent immediately upon input.
- 4) You can also transfer files using Tera Term.

SD-670D Serial Buffer Architecture

2) AIR data transfer structure

Header₽	Data1 (20Byte)√	Data2 (20Byte)₽	Data3 (20Byte)₽	Data4 (20Byte)√
30mSec	30mSec	30mSec	30mSec	30mSec
Julisec	3011360	Julisec	Julisec	3011360

Since the DMR Data Modem operates in 2: 1 mode, the actual transmission is as follows.

2:1 TDMA: There are two slots (slot1, slot2(30m/s) in a single channel so it operates as the below picture.

Γ	Header Data	Slot1 30mSec	
Ξ		Slot2 30mSec	
	Data1 20Byte	Slot1 30mSec	
Ξ		Slot2 30mSec	
	Data2 20Byte	Slot1 30mSec	- - Total : 300mSec
Ξ		Slot2 30mSec	lotar. 300m3ec
	Data3 20Byte	Slot1 30mSec	
_		Slot2 30mSec	
	Data4 20Byte	Slot1 30mSec	
		Slot2 30mSec	

Figure 2: 1 TDMA structure

3. How to use RS232 / RS422 / RS485 / USB / GPIO / Ethernet connection

4. When to use CTS and RTS for the cable.

1) The serial buffer of SD-670 is 10Kbytes. If you want to transfer a lot of data (when the amount of data exceeds 10Kbytes), you should use 5-wire serial communication method as below.

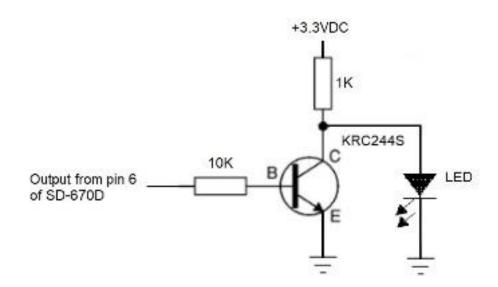
Because the RS232 Speed is 115.200bps and the transmission speed of the wireless section is slower at 9,600bps, memory management must be done in the serial buffer.

Modem-to-Host Connection

(with flow control)

RXD
RXD
RXD
TXD
TXD
TXD
Tera term or
Other S/W

RTS
RTS


When RTS is "LOW" (when the SD-670 modem's serial buffer has space): The PC or external device sends normal serial data to the modem.

When RTS is "High" (when the serial buffer of the SD-670 modem is full): it stops sending serial data to the external device.

When CTS is "LOW", data received by modem is transmitted to PC or external device. If it is HIGH, data is not transmitted to PC or external device.

5. Diagram of external circuit made to display the status of Carrier Detect.

During receive pin 6 goes low, illuminating the LED.

Appendix for additional AT Commands

8.1 Encryption Enable (For SD-670DE or SD-670D w/encryption factory option)

Description	Command to check or set the Encryption status of current channel
	AT*ENCENABLE=X
Status	<value :="" x=""></value>
Setting	0 : Disable
	1 : Enable
Status Check	AT*ENCENABLE?

Example	AT*ENCENABLE=1 => ENC Enable OK // ENC Enable Error
	AT*ENCENABLE? => CH:00 DMR ENC Enable:X, ENC Index:N

8.2 Encryption Index (For SD-670DE or SD-670D w/encryption factory option)

Description	Command to check or set the Encryption Index of current channel	
	AT*ENCINDEX=N	
Status Setting	<value :="" n=""> N : Index Range (0 ~ (end -1))=> (The number of Encryption tables set in the radio - 1)</value>	
Status Check	AT*ENCINDEX?	
Example	AT*ENCINDEX=0 => ENC Index OK // ENC Index Error	
	AT*ENCINDEX? => CH:00 DMR ENC Enable:X, ENC Index:N	

FCC RF EXPOSURE COMPLIANCE REQUIREMENTS FOR OCCUPATIONAL USE ONLY

The Federal Communications Commission (FCC), with its action in General Docket 93-62, November 7, 1997, has adopted a safety standard for human exposure to Radio Frequency (RF) electromagnetic energy emitted by FCC regulated equipment. Proper operation of this radio will result in user exposure far below the Occupational Safety and Health Act (OSHA) and Federal Communications Commission limits.

DO NOT transmit for more than 50% of total radio use time (50% duty cycle). Transmitting more than 50% of the time can cause FCC RF exposure compliance requirements to be exceeded.

- •This radio is NOT approved for use by the general population in an uncontrolled environment. This radio is restricted to occupational use, work related operations only where radio operator must have the knowledge to control the user's exposure conditions for satisfying the higher exposure limit allowed for occupational use.
- •The radio is transmitting when the LED on the cover of the radio is illuminated.
- •These are required operating configurations for meeting FCC RF exposure compliance. You will be in violation if you fail to observe these restrictions.

This device complies with part 15, 90 of the FCC rules. Operation is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) This device must accept any interference received, including interference that may cause undesired operation.